Народ
Главная | Регистрация | ВходВторник, 28.03.2017, 05:17
Мой сайт
Приветствую Вас Гость | RSS
Меню сайта

Мини-чат

Наш опрос
Оцените мой сайт
Всего ответов: 0

Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Форма входа

Главная » 2013 » Март » 19 » Народ
18:07
 

Народ

В этой главе мы рассмотрим, как было сформировано физическое тело планеты. В четвертой главе мы уже разобрали, как образовался планетный кварт Земли на основе ИСМ (интегральной структуры мироздания). Напомню, что форма Земли в результате дифференциации планетного кварта преобразовалась в икосаэдрододекаэдрическую структуру, причем центральные точки каждого из 12 граней додекаэдра мы определили как особые точки третьего рода. Характерной особенностью особых точек является то, что они становятся источником поступления в пространство вещества, эдакое подобие "белых" дыр. Как само пространство преобразуется в вещество, мы рассмотрели на примере образования атомов водорода и гелия. Но мне бы хотелось сначала отметить здесь небольшую неточность: более правильно говорить не как пространство преобразуется в материю, а как хронооболочка преобразуется в вещество и пространство, потому что само пространство тоже возникает вместе с выделяющимся веществом, и чем больше вещества выделится, тем больше станут размеры пространства. Вероятно, с этим и связан факт разбегания Галактик, ведь вещество во Вселенной образуется постоянно. Но, несмотря на эту оговорку, в дальнейшем все равно будем говорить неправильно, т.е. о преобразовании пространства в вещество.

Теперь для полноты картины разберемся, как образуются атомы более сложных химических элементов, так называемые многоэлектронные атомы. Более того, мы попробуем проследить как бы их историческое развитие. Вообще, проблема изучения исторического развития атомных систем связана с тем, что само возникновение атомов предполагается случайным процессом. По современным представлениям атомы легких элементов образуются при столкновении элементарных частиц, которые могут захватить друг друга, образуя устойчивую структуру. При столкновении легких атомов они могут объединиться и создать атом более тяжелого элемента. Процесс этот считается случайным, и образование различных атомов носит вероятностный характер. Проследить закономерности в таких процессах крайне сложно, т.к. можно использовать только статистические методы наблюдения. В создаваемой концепции образование атомов закономерно и вполне отвечает процессу, который называется эволюцией материи. Эта закономерность следует из всех предшествующих шагов развития пространственной структуры. Фактически можно считать, что интегральная структура Земли задает структуру образующегося физического вакуума.

Пространство, в котором формируется физическое тело планеты, разбито на множество областей, каждая из которых порождает корпускулярную материю. Вещество выделяется в особых точках первым, вторым и третьим модулем ИСМ последовательно по ходу создания этих модулей. Как было видно из предыдущей главы, первыми начинают создаваться атомы водорода, как структурные элементы нулевого уровня физического вакуума. Создаются они уже сразу, можно сказать, в "готовом виде". Причем формирование таких устойчивых водородных систем определено всеми предшествующими процессами. После того, как произошло создание второго пространственного модуля Земли, пространство физического вакуума перестроилось, и начали генерироваться атомы гелия. Таким образом, формирование планеты как целостной системы происходит в 12-ти подпространствах интегральной структуры. Наверно, стоит сказать несколько слов о том, почему в основу формы Земли легла икосаэдрододекаэдрическая структура. Просто такое решение имеет одна из сложнейших задач геометрии: найти тело наименьшей поверхности при заданном объеме и притом состоящее из одинаковых и тоже простейших фигур. И таким наиболее "экономичным" решением является додекаэдр.

Дальше история образования многоэлектронных атомов осуществляется согласно седьмому принципу самоорганизации систем. По нулевому, хрональному признаку можно выделить семь различных уровней физического вакуума. Фактически, это семь возможностей существования физического вакуума, которые определим как его фазовые состояния. Особые точки интегральной структуры являются причиной возникновения новых подпространственных структур более мелкого порядка. Поэтому наши 12 подпространств дробятся на ряд более мелких структур - ячеек подпространств. В этих ячейках физический вакуум начинает перестраиваться в более сложные структуры. Известно, что вакуум способен перестраиваться под влиянием внешнего поля подобно тому, как перестраиваются при изменении внешних условий обычные твердые или жидкие тела. Как, например, одно и то же вещество в зависимости от внешних условий может находиться в разных состояниях, в разных фазах, так и вакуум способен внезапно скачком перестраивать свою структуру при достижении некоторого критического значения внешнего поля. Такой скачок физического вакуума из одного состояния в другое связан с резким изменением всех характеристик системы.

Нулевой и первый структурные уровни физического вакуума имеют возможность проявить в себе два вида корпускулярных систем в виде атомов водорода и гелия. Причем в этом случае, особые точки пространства становятся как бы источниками, из которых в проявленный мир поступает вещество в виде корпускул водорода и гелия. Вместе с атомами одновременно накапливаются в большом количестве, u, d бозоны. Обладая способностью накапливаться на одном уровне, эти бозоны создают некий структурный барьер вокруг особой точки, не позволяющее разлетаться проявленным атомам, причем u -бозоны накапливаются на своем уровне, а d -бозоны накапливаются на собственном уровне. В результате этого образуется потенциальное поле внутри некоторой замкнутой области, которая удерживает внутри себя корпускулярную материю. Поскольку ранее было высказано предположение о том, что d -бозоны создают потенциальное гравитационное поле, то в отношении u -бозонов пока не будем делать никаких предположений.

По мере накопления бозоны начинают оказывать влияние на саму структуру пространственно-временного континуума. И при скоплении определенного количества u ,d -бозонов физический вакуум скачком перестраивает свою структуру, а это значит, что в определенной замкнутой области пространства, определяемой границей накопленных d -бозонов, осуществляется фазовый переход, и вакуум становится структурой второго уровня. При этом ближайшие области пространства, примыкающие к пространству физического вакуума второго уровня, начинают испытывать с его стороны воздействие и также перестраивают свою структуру с нулевого уровня на первый. В результате чего перестраивается не только одна область пространства, но и соседние с ней.

Структура физического вакуума второго уровня

При формировании второго уровня физического вакуума основным действующим принципом становится пятый принцип, который предполагает многократную дифференциацию любой индивидуальности. В нашем случае индивидуальностями являются кварты пространства, заполненные кварковыми тетрадами, в которых задействованы по два u,d-кварта. Следовательно, пятый принцип допускает возможность многократных дифференциаций u,d-квартов. Но с другой стороны, ранее было оговорено, что u,d-кварты пространства являются минимально возможными объемами пространственно- временного континуума, не подлежащих дальнейшей дифференциации, т.к. этим был определен предельный порог дифференцирования.

Из возникшего парадокса можно выйти, сделав следующее допущение. Если дифференциация пространства до нулевого порога осуществлялась в положительной области допустимых значений, то за нулевым порогом дифференциация переходит в область своих отрицательных значений, что соответствует понятию антидифференциации. Чтобы определить понятие антидифференциации воспользуемся обычной заменой функции на ее антифункцию. Тогда понятию антидифференциации будет соответствовать понятие интегрирования или интеграции. Здесь дальнейший процесс дифференциации пространства заменяется на интеграционный процесс образования материи, т.к. антидифференциация есть процесс дифференцирования уже не пространства, а его содержимого, т.е. выделяющейся энергии динамического хаоса. Сделав такое допущение, мы снова вернулись к основному положению, что любая дифференциация заканчивается интеграцией, только теперь хотелось лишний раз подчеркнуть, что интеграция это тот же процесс, который продолжает дифференциацию, но на качественно ином уровне.

Теперь каждая образованная кварковая тетрада открывает новый способ творения дифференциальной материи, что определяется в виде интеграции дифференцированных порций энергий. Это означает, что кварковая тетрада становится неким "окном" в пространственно - временном континууме, сквозь которое поступают определенные порции энергии в виде двух троек элементарных частиц (протона, нейтрона и пиона) и бозонов. В этом заключен смысл того, что пространство само как бы перестраивается в материю, или, другими словами, пространство вокруг особых точек порождает материю.

Обратимся к кварковой тетраде, основная структура которой состоит из двух нуклонных пар и двух пионных облаков, которые также будем называть электронными облаками в силу устоявшихся традиций. На рис.12а видно, что обе нуклонные пары со своими электронными оболочками, образующих пару элементарных триад, идентичны друг другу во всех отношениях. Единственным их отличием является ориентация в пространстве, что определяет спин каждого фермиона и бозона в тройке элементарных частиц. В силу их тождества дальнейшую дифференциацию кварковой тетрады будем рассматривать только для одной половины (рис.12.б), для которой и рассмотрим образование многоэлектронных атомов и строение их электронных оболочек. Таким образом, исходным уровнем для нас является первый уровень структуры физического вакуума, который в дальнейшем будет изображаться как один d-бозон. Поскольку в атоме гелия он соответствует одному из электронных облаков, второй располагается симметрично, то разбор образования многоэлектронных атомов начнется со структуры, изображенной на рис.12.б, которая обозначает одно из электронных облаков атома гелия. Следует помнить, что атом водорода по отношению к атому гелия является структурой более высокого порядка, т.е. является ее надсистемой. Чтобы в дальнейшем был более понятен способ формирования многоэлектронных атомов, следует отметить, что все электронные оболочки атомных структур полностью повторяют схему интегральной структуры мироздания. Поэтому строение атомных систем составляет тождество со строением Вселенной на уровне интегральной структуры, т.е. каждый атом представляет собой минивоплощение структуры всей Вселенной.

При описании строения электронных оболочек в физике многоэлектронных атомов используются квантовые числа. В 1925 г. В. Паули установил квантово-механический закон, называемый "принципом Паули" или принципом исключения. В современной формулировке этот принцип звучит так: в любой системе, содержащей множество электронов, в стационарном состоянии, определяемом набором четырех квантовых чисел: главного n, орбитального l, магнитного m, спинового s, не может быть более одного электрона. Для системы электронов в атоме принцип Паули можно записать следующим образом: Z(n,l,m,s) = 0 или 1.

Z(n,l,m,s) - это число электронов, находящихся в состоянии, описываемом набором четырех квантовых чисел, где n - главное квантовое число, показывающее номер заполняемой орбиты. Орбитальное квантовое число - l , определяющее форму орбиты электрона или орбитальный момент электрона. Магнитное квантовое число - m, определяющее магнитный момент электрона и s - спиновое квантовое число или спин электрона, который может находиться только в двух состояниях, т.е. s=+1/2, s= 1/2. Между внутренними признаками, определяемыми как L,M,N- признаки, и квантовыми числами - l , m, n существует однозначная связь. Напомним, что L-признаки задают выделенные особые точки в пространстве системы, в которых формируется подпространство системы или пространство подсистем. Этому признаку поставим в соответствие орбитальное квантовое число- l. М-признаки образуют выделенные направления в пространстве системы и подсистем, вдоль которых могут формироваться кварты электронных облаков, в системе многоэлектронных атомов этот признак определяет магнитное квантовое число. Трехмерность самих квартов и их размер определяется N-признаками, которому соответствует главное квантовое число. Спин электрона в атоме не имеет аналогии с внутренними признаками интегральной структуры, он возникает как отдельный признак в результате образования двух тождественных троек элементарных частиц из одной кварковой тетрады. Он определяет в данном случае различие в их пространственной ориентации, т.е. плоскость одной тройки, как видно из рис.9, отклоняется на угол +450, плоскость другой - на угол -450 относительно главной оси барионного кубика. Назовем спиновое квантовое число как S-признак.

Благодаря этому признаку, кварковая тетрада может проявляться двумя тройками элементарных частиц последовательно, а не в совокупности, что обусловливает возникновение атомных систем, в которых атомный номер химического элемента изменяется на одну единицу. В противном случае, мы бы имели атомы, обладающие только четными номерами.

Таким образом, первая поляризация кварковой тетрады на втором структурном уровне физического вакуума определяет возникновение двух систем: атома лития (Z=3) и атома бериллия (Z=4) (рис.13а). Количество поляризаций для второго уровня определяется количеством квартов, соответствующих для второго N-признака. Таких квартов, как уже было определено, в интегральной структуре имеется четыре. Следовательно, четыре поляризации обусловливают возникновение восьми различных атомных структур.

Вторая поляризация кварковой тетрады определяет формирование еще двух троек элементарных частиц, что соответствует образованию атомов бора (Z=5) и углерода (Z=6) (рис.13б). Третья поляризация создает системы атомов азота (Z=7) и кислорода (Z=8) (рис.14), последняя - четвертая формирует атомы фтора (Z=9) и неона (Z=10) (рис.14). Каждая порция энергии, поступающая при очередной поляризации кварковой тетрады, заполняет кварт пространства в интегральной структуре, образуя триаду элементарных частиц.

Заполнение квартов происходит в соответствии со схемой, изображенной на рис.15. Как видно из этого рисунка электронные оболочки заполнили все кварты, относящиеся ко второму N-признаку. Завершенность второго уровня характеризует последняя атомная система неона, который, как известно, представляет собой инертный газ. Как видно, физический вакуум второго уровня обусловливает формирование более тяжелых атомов корпускулярной материи.

Структура физического вакуума третьего и последующих уровней

После завершения поляризации кварковой тетрады на втором уровне, физический вакуум перестраивается на следующий структурный уровень. Это происходит в результате образования нового дополнительного пространства по признаку L=2. Размер квартов, которые формируются по новому L-признаку, определяется третьим N-признаком.

Формирование третьего структурного уровня начинается с образования очередной хрональной оболочки. При образовании новой хрональной оболочки из кварковой тетрады снова начинает поступать динамическая энергия определенными порциями, образуя тройки элементарных частиц третьего уровня. Образование многоэлектронных систем повторяет в себе интегральную структуру мироздания, поэтому с формированием нового подпространства, кварковая тетрада представляет собой ту ее часть, в которой присутствуют все кварты относящиеся к N-признакам с первого по третий.

Заполнение квартов происходит все время по одной и той же схеме. Вначале заполняется один кварт по нулевому L-признаку, затем три кварта по первому L-признаку (рис.15). В результате заполнения этих четырех квартов у нас получаются восемь химических элементов: натрий (Z=11), магний (Z=12), алюминий (Z=13), кремний (Z=14), фосфор (Z=15), сера (Z=16), хлор (Z=17), аргон (Z=18).

Далее заполняются пять квартов по второму L-признаку, формируя еще 10 элементов. Шесть из них скандий (Z=21), титан (Z=22), ванадий (Z=23), хром (Z=24), марганец (Z=25), железо (Z=26) образуются вдоль существующих осей М=0, М=+1, М=-1. Четыре элемента кобальт (Z=27), никель (Z=28), медь (Z=29), цинк (Z=30) формируются в квартах, образованных вдоль новых осей подпространства М=+2, М=-2. Правда, здесь у нас два элемента под номером 19 и 20 выпадают, т.к. они относятся к четвертому N-признаку, а их заполнение происходит раньше, чем закончилось заполнение квартов по второму L-признаку.

Как видно, заполнение внутренних квартов третьего уровня формирует практически два периода в таблице химических элементов. Один из них определяет третий период, другой - четвертый, которым и завершается интеграция этого плана. Таким образом, из периодической системы рассмотрены первые четыре периода.

Образование атомных структур более тяжелых элементов происходит аналогично приведенной выше схеме. В общем виде на рис. 16 представлена вся периодическая таблица, где каждому кварту соответствует по два химических элемента. На этом рисунке в каждом кварте цифрами отмечены атомные номера элементов, заполняющие энергией непосредственно данный кварт системы. Каждый последующий структурный уровень физического вакуума отмечается формированием нового подпространства системы, где размер кварта определяется номером уровня. Каждый очередной уровень характеризуется квартом меньшего размера. Это означает, что и выделяемая энергия существенно меньше в соответствии с размером кварта.

Кварковая тетрада при своей поляризации каждый раз нам дает по две пары нуклонов и еще по 10 бозонов. Два бозона образуют электронную пару, еще два , -бозона формируют внешнее поле, оставшиеся 6 бозонов, вероятно, остаются в ядре атома, в результате чего масса атома существенно возрастает.

С образованием тяжелых химических элементов, составляющих последний структурный уровень физического вакуума, в эволюционном плане развития корпускулярной материи отмечается окончательное завершение интеграции физического плана. Схема строения электронных оболочек в атоме, как уже отмечалось, полностью повторяет интегральную структуру мироздания. Это объясняется тем, что на этом уровне творения смыкаются инволютивный и эволюционный процессы. Являя в данном случае между собою тождество, оба процесса одновременно воплощаются в единую схему творения. Инволюционный процесс здесь выражен в уменьшенном зеркальном отражении схемы мироздания в корпускулярных структурах, а эволюционный процесс отражается в процессе заполнения квартов этой схемы, выделившейся энергией динамического хаоса, которая при этом переходит в связанное состояние упорядоченной структуры, составляющих элементарные частицы атомных структур. В результате этого каждый атом представляет собой равновесную интегрируемую систему, время существования которой становится равным времени существования надсистемы, в качестве которой выступает Солнечная система. Полный распад и исчезновение всех атомов возможно только с исчезновением Солнечной системы и после завершения всех этапов ее развития.

Расширяющаяся Земля

Итак, мы рассмотрели вопрос образования материи в квартах планеты Земля. Давайте представим, как бы это выглядело, если бы мы могли видеть этот процесс в качестве сторонних наблюдателей. Вначале появляется некоторая область пространства, в центральной точке которой начинает клубиться тонкая струйка газа. Как мы понимаем, так происходит проявление атомов водорода в центре кварта первого модуля. По мере накопления и уплотнения водородного облака структура пространства меняется, и вокруг первой точки появляются еще 4, из которых также начинают куриться струйки водорода, в то время как из центральной точки начинает появляться гелий. Мы видим, что пространство Земли исполнено вращающимися сферами, которые располагаются в вершинах правильного многогранника - тетраэдра. Форма Земли очень далека от сферической. Вся эта конструкция двигается, перемещается, и не понятно, что же она напоминает, то ли куб неправильной формы, то ли еще какую-то причудливую фигуру? Спустя какое-то время 4 точки второго рода перестраиваются, и в окружающем пространстве возникают еще 12 точек, из которых также начинают клубиться струйки газа. Понятно, что подпространства нового модуля, выполненного из 12-ти сфер, не могут пересекаться друг с другом, и они равномерно располагаются вокруг первоначального тетраэдра, хотя и захватывают его пространство. (Напомню, что хрональные оболочки разных модулей могут пересекаться). Теперь пространство Земли напоминает пузырящееся 12-тью одинаковыми сферами газовое образование, в центре которого сфера первого модуля, и она более плотная, т.к. там уже проявляются более тяжелые атомы лития, бериллия, а в сферах тетраэдра уже клубится гелий. Но и каждая из 12-ти сфер также представляет собой вращающийся тороид, по краям которого вещество выплескивается, а в центре втягивается снова внутрь. Вероятно, начинает действовать сила гравитации, втягивающая вещество обратно, и не позволяя ему разлетаться. Теперь мы понимаем, что эта форма Земли уже чем-то начинает походить на додекаэдр. И снова, достигнув критического значения количества вещества, структура пространства меняется, и вокруг каждой их 12-ти первичных точек образуются еще по шесть новых центров клубящегося водорода. И теперь планета напоминает пузырящиеся соты, и все это синхронно перемещается в тороидах додекаэдра. И снова структура Земли перестраивается в новую форму - икосаэдра. А в центральной точке проявляются атомы еще более тяжелых элементов бора, углерода и т.д. (Кстати отметим, что структура кристаллического бора - идеальный икосаэдр). Как мы понимаем, такое изменение пространства происходило каждый раз, когда количество вещества превышало некоторый определенный уровень, как бы сейчас сказали, "критическую" массу. И с каждым разом в пространстве появляются атомы все более и более тяжелых элементов, пока, в конце концов, не наполнили Землю тем самым веществом, из которого она сейчас и состоит. А форма Земли со временем сгладилась, стала больше походить на сферу, хотя понятно, что энергетические центры особых точек действуют и поныне, хотя и с меньшей интенсивностью. Поэтому и влияние получившейся икосаэдрододекаэдрической структуры на дальнейшее развитие всех земных форм - биологических и социальных сказывается в полной мере.

Несомненно, что такое представление о возникновении материи никак не согласуется с общепринятым мировоззрением. Ведь мы привыкли считать, что материя в неизменном виде существует вечно, только переходя из одного состояния в другое. А у нас материя возникает как бы из ничего, из ниоткуда. Например, в гипотезе возникновения Земли из газопылевого облака ее масса росла за счет столкновения и слипания частиц пыли, летающих в бесконечных просторах Вселенной. И сформировавшись однажды в своем окончательном виде, она (масса) уже практически никогда не менялась. В нашем же случае дело обстоит по-другому. Масса Земли растет за счет появления материи из особых точек пространства, занимаемой планетой. Поэтому на протяжение всей эволюции планеты масса Земли время от времени скачкообразно увеличивалась. Попробуем это доказать.

Еще в 1933 году О. Хильгенберг предложил гипотезу о глобальном расширении Земли. Периодически к этой гипотезе возвращались Кери, Хизен, Кирилов, Нейман и многие другие. Суть этой модели заключается в том, что приращение земной коры происходит за счет разрастания океанов и компенсируется увеличением радиуса и площади поверхности. Гипотеза, конечно, очень смелая и мало укладывается в нашем привычном представлении о Земле. Однако существует немало фактов, которые можно объяснить, только предположив, что объем Земли изменился в несколько раз. Приведу несколько таких фактов. (рис.)

рис.17. Совмещение материков

Например, контуры материков, особенно очевидно это для Америки, Европы и Африки, сходны между собой: их можно "сложить" по береговой кромке Атлантики и без особой натяжки получить единое целое. Также очевидно и сходство континентов, лежащих по берегам Индийского океана. Компьютерное моделирование подтвердило это с высокой точностью. Предлагаю посмотреть вам интересный ролик. Это видео - мультипликация Нейла Адамса о теории роста Земли. Посмотрите сами, это выглядит потрясающе. Земля

Далее. Геологические структуры одного материка продолжаются на другом, так, словно океан не более чем ножницы, которые рассекли ткань верхних слоев земной коры. Это возможно только в том случае, если материки некогда соприкасались друг с другом, составляли единое целое.

Можно, однако, предположить, что некогда существовал единый материк, который раскололся и разъехался в разные стороны. Но в этом случае движущиеся литосферные плиты должны были бы "перекорежиться", а этого не наблюдается - почти в первозданном виде осталась тонкая пленка земной коры. Кроме того, материки, перемещаясь, должны были бы сдвинуться относительно своих глубинных структур, но "корни" материковых разломов прослеживаются на сотни километров вглубь, а толщина земной коры под материками равна в среднем всего 30 - 70 километрам.

Следующий факт. Возраст океанических плит и континентальных существенно отличается - океаны во много раз моложе континентов. Глубинное бурение пород океанического дна подтвердило это. Выходит так, что лет сто миллионов назад континенты были, а Мирового океана еще не существовало. Не было океанов Земли, были только моря наподобие Средиземного.

Еще факт. Земной шар опоясан сетью гигантских океанических разломов (срединно-океанические хребты и рифты). Наблюдения свидетельствуют, что эти всепланетные разломы подобны расползающимся швам. Когда Земля была меньше, континентальные глыбы стояли впритык. При расширении земная кора "трескалась", появлялся "шов", из которого шло поступление глубинного вещества, постепенно формирующего океаническую часть коры.

Как известно, континентальная кора разительно отличается от океанической. Во-первых, по мощности: на континенте толщина земной коры 20 - 70 километров, в океанах - 5 - 15. Во-вторых, по строению и составу. Континентальные зоны земной коры "трехэтажны" - сверху комплекс осадочных пород, посредине комплекс гранитных пород, в основании базальты. А в океанических зонах земной коры гранитного комплекса нет. Если Земля действительно расширялась, то такое различие закономерно. Океаническая кора моложе, следовательно, проще и тоньше. (рис)

Рис.18. Срединно-океанические хребты

Можно сказать, что очертания и структуры материков сходны, потому что континенты действительно образовывали некогда единое целое. Материки движутся без существенной деформации, без "отрыва" от своих глубинных корней. И это понятно: сами по себе материки не движутся, не "плывут". Они вместе со всеми своими глубинными "корнями" перемещаются наподобие бугорков футбольной камеры, когда ее надувают воздухом.

Измерения величины планеты, выполненные НАСА, указывают на увеличение расстояния между Европой и Северной Америкой со скоростью 1,5 плюс-минус 0,5 см/год, между Северной Америкой и Гавайями - на 4 плюс-минус 1 см/год, между Гавайями и Южной Америкой - на 5 плюс-минус 3 см/год. Принимая все это во внимание, рассчитали, что радиус Земли увеличивается со скоростью 2,8 плюс-минус 0,8 см/год. Стало быть, окружность земного шара увеличивается в среднем на 17,6 см/год и менее чем за 150 млн. лет возросла как минимум на 12600 км.

Как видим, эти факты говорят в пользу увеличения радиуса Земли, но не менее важно знать: увеличение объема происходило за счет увеличения вещества (массы) Земли, или за счет разуплотнения вещества. Поэтому приведем несколько фактов в пользу увеличивающейся массы Земли, что в свою очередь означает и увеличение силы тяжести.

Факт первый. Измерения, проведенные с помощью космического аппарата на орбите Земли, показали, что ее вращение замедляется с относительной скоростью 2.37101/год (Микиша А.М. Космические методы в геодезии. Знание, М. 1983). Этот результат подтверждается анализом геологических отложений, возникающих в период приливов. По современным расчетам земные сутки 500 млн. лет назад были равны 20,8 часа. Т.е. за последние 500 млн. лет период суток увеличился почти на 4 часа. Это можно объяснить только тем, что если растет масса планеты, то увеличивается и ее момент инерции вращения, а, следовательно, замедляется скорость вращения Земли вокруг своей оси.

Факт второй. Кто из нас в детстве не строил крепости из песка! Не пытался при этом добиться внушительной крутизны стен? Но сухой рыхлый песок не позволяет сделать откос крутым. У любых сыпучих пород есть свои, строго определенные углы естественного откоса. Они зависят как от свойств пород, так и от силы тяготения: чем меньше сила тяжести, тем при прочих равных условиях круче будет угол склона. В древних осадочных породах можно найти четкие следы "окаменевших" углов наклона сыпучих образований (ветровая рябь на песке, древние дюны, речные наносы). Измеряя откосы древних сыпучих образований, кандидат геолого-минералогических наук Л.С. Смирнов обнаружил, что в прошлом образовывались более крутые, чем теперь, скаты. Сомнительно, что прежде физико-химические свойства сыпучих пород были иными. Более вероятно, что меньшей была сила тяжести.

Попробуем посмотреть, не растет ли сила тяжести и ныне. По наблюдениям в Вашингтоне с 1875 года по 1928 год сила тяжести возросла там с 980098 до 980120 миллигал. Для районов Прибалтики, Ленинграда, Кавказа, Средней Азии по наблюдениям 1955 - 1967 годов сила тяжести возрастала в среднем за год на 0,05- 0,10 миллигал. Много это или мало? Мало, почти неощутимо, если мерить историю годами и тысячелетиями. Много, очень много, если вести счет на миллионы и миллиарды лет геологической истории Земли. Зафиксированные темпы нарастания силы тяжести оказались примерно соответствующими тем теоретическим расчетам: за сто миллионов лет сила тяжести на поверхности Земли возросла примерно в два с половиной раза, радиальный размер планеты при этом удвоился. А 600 миллионов лет назад она была в 6 - 8 раз меньше современной. Следует, конечно, оговориться, что зафиксированные приборами темпы возрастания силы тяжести можно интерпретировать иначе. Все это можно объяснить флюктуацией, эпизодическим отклонением (в один период времени сила тяжести ничтожно возрастает, в другой, быть может, уменьшается, так, что среднее остается неизменным). И все же такое истолкование не более чем предположение, которое ничем не доказано. Да и как его можно доказать или опровергнуть, если сотни лет назад, не говоря уже о тысячах и миллионах, никто никаких измерений силы тяжести не вел и вести не мог? Проблему надо рассматривать в совокупности, а эта совокупность как раз и убеждает нас, что размеры Земли и сила тяжести на ней не оставались постоянными.

И еще один, наверно, один из самых парадоксальных фактов. Известно, что с выходом жизни на сушу размеры животных в ходе эволюции постепенно возрастали. Не всех, конечно, но возрастали. В общем, это понятно: крупному и, следовательно, более сильному существу легче противостоять хищникам. Максимума это укрупнение достигло в мезозое, в эпоху господства пресмыкающихся - динозавров, когда землю попирали гиганты, по сравнению с которыми слон просто карлик. Но далее произошел перелом. Гигантские динозавры постепенно мельчают (относительно, конечно), затем вымирают. Лидерами сухопутной жизни становятся мелкие поначалу млекопитающие. После освобождения от тирании динозавров происходит укрупнение их размеров. Но, во-первых, это куда более слабая, чем прежде, вспышка гигантизма. Во-вторых, в последние миллионы лет наблюдается неуклонное снижение размеров наиболее крупных млекопитающих (пещерный медведь или олень были крупнее современных медведей и оленей; мастодонт был крупнее мамонта, а мамонт - слона и так далее).Не исключено, что тут действуют какие-то пока неясные биологические закономерности Но, по крайней мере, столь же правомочно другое истолкование: на Земле возрастала сила тяжести, а в этих условиях "конструкция" гигантов становилась все менее рациональной; исполины погибли, так сказать, раздавленные собственным весом. Вывод из этого таков: во времена юрского периода сама планета Земля по размерам напоминала сегодняшний Марс. Имея меньшую массу, она, естественно, продуцировала и несравненно более слабое гравитационное поле.

Прибавление массы ведет к разбуханию Земли. Избыточная масса, образовавшаяся внутри тела Земли, выделяется через рифовые хребты, расположенные на дне океанов, раздвигая дно в обе стороны. Проведенные специальными экспедициями (в основном, французскими) измерения показали, что по осям океанических срединных хребтов - Северо - и Южно-Атлантических, Западно- Индийского, а также Австрало-Антарктического, Южно - и Восточно-Тихоокеанских поднятий океанская порода имеет возраст, не превышающий 10-20 млн. лет. Далее к берегам возраст пород увеличивается монотонно, достигая у берегов 200 млн. лет. А на материках этот возраст скачком увеличивается и по всей поверхности материковых плит составляет 4-5 млрд. лет

Поскольку в разные периоды эволюции планеты образовывались разные химические элементы, то становится понятным, почему при разрастании Земной коры океанов никогда уже не образуются граниты, почему меняется состав магматических пород при "старении" вулканов и многое другое. Сложные комплексы соединений атомов образовавших граниты больше не повторятся при росте Земли, т.к. атомы, входящие в его состав образовались с прилегающих зон, миллиарды лет назад. Процесс извержений вулканов также идет с учетом этих закономерностей. Подобным образом объясняется механизм динамики содержания газов в породах. В обычных условиях в почвах присутствует радон, но в момент землетрясений его количество резко падает, а возрастает содержание гелия.

Но гипотеза о расширяющейся Земле за последние десятилетия потеряла свою привлекательность, и мало, где обсуждается. Высказанные много лет назад Ю. А. Трапезниковым соображения относительно гипотезы Хильгенберга - Кэри - Хизена, о том, что она 1) объясняет расположение и развитие срединных океанических поднятий; 2) объясняет предполагаемый факт единства материков в прежние времена; 3) не объясняет механизма складкообразования; 4) не объясняет различий в платформенном и геосинклинальном этапах развития земной коры, расположения всех сейсмических зон, вулканических поясов и т.д.; 5) не указывает причин расширения Земли - пока ни кем не опровергнуты. Конечно, самым мощным аргументом против этой гипотезы является невозможность объяснить причины возрастания массы вещества. Но теперь, принимая во внимание новую концепцию образования вещества во Вселенной, становится понятным, что все перечисленные возражения легко снимаются. А вместе с этим также принципиально доказывается предлагаемая концепция самоорганизации систем.

В качестве другого доказательства рассмотрим внутреннее строение Земли.

Рис.19. Внутреннее строение Земли и траектории сейсмических волн, пересекающих Землю

По скорости прохождения сейсмических волн во внутреннем строении Земли выделяют две основные зоны: ядро и мантию, окружающую ядро. Сверху Земля покрыта земной корой, которая напоминает тонкую яичную скорлупу. Границы, которые фиксировались отраженными волнами, характеризуются резким изменением скорости сейсмических волн. На рисунке представлены значения скоростей в зависимости от глубины, где видно, что значение скоростей резко меняется на границе между мантией и ядром. Со временем стали выделять более сложное строение, а именно, внутренне и внешнее ядро, а также внешнюю и внутреннюю мантию.

Чем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км. Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии. Глобальные границы представляют иную категорию явлений. Они отвечают за существенные изменения в мантии.

Не смотря на сложное внутреннее строение Земли, нас больше интересует всего две зоны - ядро и мантия. Именно они образовались из первого и второго модуля интегральной структуры Земли. Вряд ли можно найти еще какое-либо другое более логичное обоснование в образовании таких мощных глобальных различий между двумя этими структурами: ядром и мантией. Только такая существенная разница между двумя типами хрональных оболочек способна породить такую глобализацию различий в веществе, слагающих ядро и мантию.

Рис. 20. Зависимость скорости сейсмических волн от глубины

Земля - кристалл?

В дополнение к вышесказанному мне бы еще хотелось вернуться к вопросу о проявлениях второго модуля интегральной структуры Земли в виде икосаэдрододекаэдрической структуры.

Впервые о том, что Земля не шар, а имеет более сложную геометрическую форму в виде кристалла, имеющее упорядоченное, симметричное строение, подумали греческие ученые- математик Пифагор и философ Платон. Они перебрали множество многогранников и, наконец, выбрали два "идеальных", которые могли являться моделью Земли: икосаэдр и додекаэдр. Идея объяснить особенности внутреннего строения Земли с помощью представления ее в форме кристалла привлекла также в XIX веке и двух французских ученых- геолога де Бемо-на и математика Пуанкаре. Уже практическое использование гипотезы "Земля - это растущий кристалл" для объяснения процессов, идущих не только в недрах и на поверхности планеты, но и оказывающих влияние на изменение живого мира и даже на развитие цивилизаций, предприняли еще в СССР Н. Гончаров, В. Макаров, В. Морозов. По их мнению, "силовое поле этого растущего кристалла" обуславливает икосаэдрадодеакаэдрическую структуру Земли. Эти многогранники вписаны друг в друга. На поверхности Земли проступают проекции икосаэдра и додекаэдра. 62 вершины и середины ребер этого сложного кристалла обладают особыми свойствами.

Рис.21. Схема икосаэдрадодеакаэдрической структуры Земли

Описание системы, сделанной Гончаровым, представлено на рис.21. Он выделил 20 правильных сферических треугольников с углами по 72°, стороны которых образуются кратчайшими дугами (геодезическими линиями). Треугольники покрывают земной шар тремя поясами: по пять треугольников вокруг каждого из полюсов и 10 по экватору. Они образуют 30 ромбов с осями: север-юг, запад-восток и наклонными к ним. Соединив между собой центры треугольников, Гончаров получил 12 правильных пятиугольников, объединив, таким образом, в единую систему: треугольники, ромбы и пятиугольники.

Гончаров выделил в этой системе существование 6-ти силовых осей геомагнитного поля, рассматривая только систему пятиугольников - сферододекаэдр. Шесть осей проходят через центр тела (с углами между осями по 72 гр.), 12 концов которых выходят в серединах его 12 граней. Геофизический материал показывает наличие резких геомагнитных отклонений в 6-ти из 12 центров граней сферодо-декаэдра, т. е. прослеживаются три оси. Возможная четвертая ось - линия, соединяющая географические полюса. (С осью Земли совпадают: ось икосаэдра, проходящая через две противоположные вершины, и ось додекаэдра, проходящая через центры двух противоположных граней).

Ось N1. Между полуостровом Флорида, Бермудскими островами и островом Вьерж (что довольно близко к центру пятиугольника с координатами 27 гр. с. ш., 77 гр. з. д. Находится одно из двух мест в мире, где стрелка компаса показывает вместо магнитного на географический север. По мнению ученых США, в течение многих лет исследовавших этот район, именно здесь зарождаются бури и мертвая зыбь. Второй конец оси ? 1 выходит к западу от Австралии (27 гр. ю. ш., 103 гр. в. д., где отмечены неустойчивые значения скорости дрейфа геомагнитного поля, т. е. некоторая аномальность.

Ось N2. Между Японией, о-вом Гуам и северной частью Филиппинских островов (что довольно близко к центру пятиугольника с координатами 27 гр. с. ш., 139 гр. в. д.) находится второе место на Земле, где компас показывает вместо магнитного на географический полюс. Второй конец оси ? 2 имеет координаты 27 гр. ю. ш., 41 гр. з. д., т. е. точно совпадает с максимумом Бразильской магнитной аномалии.

Ось N3. Пакистан расположен точно в центре (27 гр. с. ш., 67 гр. в. д.) пятиугольника. По мнению геофизиков именно в этом районе расположен мощный геомагнитный центр. На противоположном конце оси N3 расположен остров Пасхи (27 гр. ю. ш., 113 гр. з. д.), где по свидетельству геофизиков США и Франции наблюдаются сильные магнитные отклонения, стрелка компаса там беспорядочно мечется.

Ось N4. Северный и Южный полюса Земли в геофизическом отношении также примечательны тем что через них проходит ось ? 4 сферододекаэдра. Оказалось, что центры всех мировых аномалий магнитного поля планеты расположены в узлах системы: чаще всего в центрах треугольников. Причем площадь каждой аномалии равна территории, занимаемой треугольником, а конфигурация аномалии повторяет его конфигурацию.

При сопоставлении многих общепланетарных явлений, процессов и структур с узлами и ребрами икосаэдрадодеакаэдрической структуры оказалось, что Русская, Сибирская, Африканская древние геологические платформы, Канадская и Гренландская части Северо-Американской платформы, а также все три части Антарктической платформы (разделенные понижениями) территориально совпадают с треугольными гранями икосаэдра, а разделяющие платформы геосинклинальные области (подвижные пояса земной коры) идут вдоль ребер между ними.

Так, в ребрах и узлах икосаэдра часто понижен рельеф, отмечается прогиб земной коры, осадконакопление - словом, они ведут себя как геосинклинали на различных стадиях развития. В ребрах и узлах додекаэдра, наоборот, рельеф повышен или имеет тенденцию к повышению. Здесь идет подъем вещества из глубин планеты, образование, так называемых, рифтовых зон; вещество глубин внедряется в земную кору. Было сделано важное наблюдение, что движение вещества земной коры происходит в основном от ребер и вершин додекаэдра к ребрам и вершинам икосаэдра. Такими движениями, кстати, являются движения Аравийского полуострова на северо-восток, земной коры от Байкала к Пакистану, сюда же - Индостана (в результате чего поднялись и продолжают вздыматься Гималаи), отделение от Американского материка Калифорнийского полуострова и др.

Срединно-океанические хребты и глубинные разломы земной коры тянутся, как правило, вдоль или параллельно ребрам системы. Например, большая часть Срединно-Атлантического хребта, хребет Ломоносова в Северном Ледовитом океане, пояс хребтов вокруг Антарктиды, зона разломов Оуэна в Индийском океане, разлом Анкоридж-Прадхо-Бэй на Аляске. К ребрам и узлам системы приурочена сейсмическая и вулканическая активность планеты.

С помощью фотосъемки из космоса получены интересные подтверждения некоторых ребер и узлов системы. Так, по космическому снимку, сделанному с "Зонда-5", дешифрован гигантский разлом Бахадор-Бахария-Западный Пакистан, тянущийся точно по ребру икосаэдра от узла в Марокко к узлу в Пакистане. Некоторые узлы икосаэдрадодеакаэдрической структуры на космических снимках наблюдаются в виде кольцевых поверхностных образований диаметром около 300 км или круговых облачных скоплений.

В узлах икосаэдрадодеакаэдрической структуры расположены центры максимального и минимального атмосферного давления. Районы низкого и высокого атмосферного давления совпали в южном полушарии - с центрами 5-ти ромбов (широта везде 30 гр. юж. ш; долгота - 149 гр. з. д., 77 гр. з. д., 5 гр. з. д. 67 гр. в. д., 139 гр. в. д.), а зимний австралийский минимум - с серединой треугольника (12 гр. ю. ш., 139 гр. в. д.). В северном полушарии зимой - с центрами треугольников (широта везде 50 гр. с. ш., долгота 103 гр. в. д. 175 гр. в. д., 41 гр. з. д.) летом - с центрами пятиугольников (27 гр. с. ш. 67 гр. в. д., 27 гр. с. ш., 149 гр. з. д.) и с центром ромба (30 гр. с. ш., 41 гр. з. д.).

С узлами совпадают и постоянные районы зарождения ураганов: Багамские острова, Аравийское и Арафурское моря, районы южнее Японии и севернее Новой Зеландии, архипелаги Туамоту и Таити. На метеорологических картах, изображающих воздушные течения в высоких слоях атмосферы (так наз. географический ветер) видны гигантские треугольники, повторяющие сеть силовых треугольников планеты, а на глобальных космических снимках земли облачные завихрения и массы облаков совпадают по своей конфигурации с этими треугольниками. Многие гигантские завихрения океанических течений действуют вокруг узлов системы, часто совпадая с центрами атмосферного давления.

К узлам и ребрам системы приурочены крупнейшие залежи полезных ископаемых, причем зачастую одни полезные ископаемые концентрируются у ребер и вершин додекаэдра (железо, никель, медь), а другие - у ребер и вершин икосаэдра (нефть, уран, алмазы). Это, например, нефтеносные провинции Северного моря, Тюменской области, севера Африки и Аравии, Калифорнии - севера Мексиканского залива, Аляски, Габона - Нигерии, Венесуэлы и др.; уран Габона, Калифорнии, уран и алмазы Южной Африки; железомарганцевые руды вдоль срединно-океанических хребтов, рудоносные ребра системы с Кировоградской и Курской аномалии, субмеридианальная рудная зона Эрднет в Монголии, ребро системы, совпадающее с Байкало-Охотским рудным поясом.

Чрезвычайно интересно наблюдение Гончарова, Макарова и Морозова о влиянии икосаэдрадодеакаэдрической структуры на биосферу. По их мнению, существуют геохимические провинции планеты, где при недостатке или избытке различных микроэлементов происходит обостренный отбор в живом мире. Две самые обширные геохимические провинции на территории нашей страны совпадают с центрами "Европейского" (2) и "Азиатского" (4) треугольников (см.рис.21). В первой - недостаток в почве кобальта и меди, во второй - недостаток йода, в результате чего происходят изменения в развитии растительного и животного мира - образуются биогеохимические провинции.

На территории Евразии во время последнего оледенения растительный мир сохранился в определенных районах, называемых "убежищами жизни" и соответствующих узлам системы. После отступления льдов хвойные и лиственные леса разрастались из этих "убежищ" по ребрам додекаэдра к серединам сторон треугольников.

Центры возникновения и развития флоры в других районах планеты совпадают с узлами 17, 36, 41, в том числе и с районом обнаруженного в 1972 г. в Габоне "Природного атомного реактора" (40), который, по мнению многих ученых, мог оказывать сильное влияние на биосферу.

Таким образом, прослеживается цепь взаимодействия от силового узла и ребра системы к геофизической аномалии, затем к геохимической провинции и далее к биогеохимической провинции, то есть к флоре, фауне и человеку.

Интересно, что перелеты птиц на юг совершаются в узлы системы: на северо-запад и юг Африки (20 и 41), в Пакистан (12), Камбоджу-Вьетнам (25), на север и запад Австралии (27 и 43), в Патагонию (28). Морские звери, рыбы, планктон скапливаются в узлах системы. Киты и тунцы мигрируют из узла в узел, и притом по ребрам системы. По-видимому, на них воздействует поле силового каркаса икосаэдрадодеакаэдрической структуры.

В узлах и вдоль ребер в соответствии с их функциями "убежищ жизни" и центров видообразования, сохранились реликтовые растения и животные: в Калифорнии (17), Судане (21), Габоне (40), на Дальнем Востоке России, на Сейшельских и Галапагосских островах.

По мнению Н. Ф. Гончарова, человек, как элемент биосферы, не мог также избежать влияния силового каркаса. Икосаэдрадодеакаэдрическая структура, влияя на биосферу, могла путем мутаций и другими путями способствовать появлению человека вообще и человека разумного в частности, а также развитию очагов культур в узлах системы.

Возможно, наши пращуры выбирали себе наиболее удобные места для поселений с точки зрения не только географических факторов, но и геофизических (в первую очередь постоянный подток потоков энергии, стимулирующих как физическое, так и умственное развитие людей). Энергия Земли пробуждала у некоторых людей скрытые, как сейчас говорят, экстрасенсорные способности. Одни из них становились "провидцами", помогавшими правителям принять единственное правильное решение, способствовавшее процветанию государства. Другие пользовались славой великих лекарей, спасавших жителей быстрорастущего города не только от индивидуальных болезней, но и от эпидемий, уносящих жизнь десятков тысяч людей и превращавших целые провинции в безлюдные кладбища. Четвертые проявляли себя в науке или в искусстве, оставляя потомкам непревзойденные шедевры архитектуры или неожиданные открытия, ставившие в тупик современных ученых. Вокруг "святых рощ", целебных родников постепенно образовывались поселения. Иногда эти поселения по каким-то причинам исчезали. Проходили десятки лет, порой века, и на ставшие безлюдными "пустоши" приходили новые народы, они заново открывали для себя и эти "святые рощи", и "живительные родники" и строили над бывшими городами свои поселения.

Классическим изображением треугольника древности являются грани египетских пирамид. Самыми примечательными из них являются пирамиды в Гизе - Хуфу, Хефрена и Менкауэра. Назначение этих пирамид явно не случайно, к этому нас подводят трудно объяснимые знания, заложенные в их строении. Пирамиды строго ориентированы по странам света. Их координаты местоположения 30 градусов северной широты и 30 градусов восточной долготы. Они расположены подле древней столицы Египта Мемфиса, название которого переводится как середина мира. Гончаров предположил, что пирамиды находятся именно в этой точке преднамеренно, как гигантский условный знак известного древним треугольного деления Земли. Главной из пирамид в Гизе считается пирамида фараона Хуфу. В середине основания северной грани этой пирамиды имеется треугольная дверь. По предположению Гончарова эта дверь является символическим отражением самой пирамиды в середине основания гигантского треугольника на поверхности Земли, и пирамида, возможно является "ключом" к системе треугольного деления Земли, как бы ее начальной точкой. Именно с определения этой точки Гончаров строил свою икосаэдрадодеакаэдрическую систему.

Во многих точках системы просматриваются совпадения геометрических центров треугольного деления с очагами крупных цивилизаций древности. В центре "Европейского" треугольника (2) находился центр образования индоевропейской языковой семьи, в Северной Монголии - центре "Азиатского" треугольника (4) - центр образования тюркской языковой семьи. В Перу - в центре "Южноамериканского" треугольника - центр древних культур мочика и чиму - предков инков. Добавим, что в "Европейском" треугольнике расселены коренные европеоиды, в "Азиатском" - коренные монголоиды, а в "Африканском" - коренные негроиды.

Анализируя полученные сферические треугольники Гончаров пришел к выводу, что в каждом из 20 треугольников, как и в "европейском", должно быть по 7 очагов культур, приходящихся на 3 вершины, три середины сторон и центр. Вот некоторые из этих точек:

- центры треугольников: Северная Монголия, Алеутские острова, Судан, Южный Вьетнам-Таиланд-Камбоджа, австралийский полуостров Арнхемленд, Таити, Перу:

- середины сторон треугольников: северо-запад Мексики (берег Калифорнийского залива), Араукания (древнее Чили), Габон, район Чэнду в Китае, Аляска.

В некоторых своих статьях Гончаров давал интереснейшее описание некоторых из этих центров (узлов).

Остров Пасхи... (27° южной широты, 113° западной долготы). Одно из названий острова Рапа-Нуи, что означает "большое пространство", а прежде остров называли Те Пито о Те Хэнуа, то есть "Пуп Земли". Остров Пасхи - одно из загадочных мест Земли, многие тайны его до сих пор являются предметом спора ученых мира. Древняя культура острова имеет в некоторых областях аналогии в культурах Полинезии и... древнего Перу. Исследователь Полинезии Хироа показал, что полинезийская культура Тихого океана как бы замкнута в громадный треугольник с вершинами у Гавайских островов, Новой Зеландии и острова Пасхи. Построенный им "Великий полинезийский треугольник" совпадает с "Полинезийским треугольником" икосаэдра. Заселение этого треугольника, согласно Хироа, происходило из его центра на островах Таити (31) к вершинам: на Гавайи (16), Новую Зеландию (45), остров Пасхи (47), а также к серединам сторон треугольника (30, 32, 46), по ребрам додекаэдра. Согласно же Т. Хейердалу, остров Пасхи был заселен переселенцами древнего Перу. А этот район - центр соседнего "Южноамериканского треугольника ИДСЗ, для которого остров Пасхи также является вершиной. Получается, что в один и тот же узел были направлены движения народов с противоположных сторон.

Район севера Багамских островов (27° северной широты, 77° западной долготы). Р. Маркс в статье "Атлантида. Не станет ли легенда былью?" (ж-л Вокруг Света, 1972, N 4) писал о том, что близ островов Бимини и Андрос на дне было найдено более дюжины каменных домов, один из которых похож на огромную каменную пирамиду; гигантская каменная дамба - громадная каменная стена длиною в несколько тысяч футов, сотни круглых, напоминающих колеса камней диаметром от 60 см до 1,5 м и с отверстием в центре, множество обломков обработанного мрамора, отдельные части мраморных скульптур и древние керамические изображения человеческих лиц. По мнению специалистов, датировка этих массивных сооружений представляет затруднения. Их не могли возвести под водой. Но в отдаленной древности, приблизительно 4 - 5 тысячелетий до н. э., океан был на 6 м ниже нынешнего уровня. Это означает, что стены были, вероятно, построены, по крайней мере 6 - 7 тыс. лет назад.

Вершина треугольника южнее Японии (27° северной широты, 139° восточной долготы). Япония - страна древней культуры. Японские императоры, согласно легендам, вели свое происхождение от "божественного" начала. Л. Зайдлер в книге "Атлантида" пишет: "Согласно японским преданиям, императорская семья принадлежала к поколению людей, живших до потопа. Об этом рассказывается в очень древней японской книге "Койи-Ки"... Первым в

Просмотров: 178 | Добавил: spield | Рейтинг: 0.0/0
Всего комментариев: 0
Поиск

Календарь
«  Март 2013  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031

Архив записей

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz


  • Copyright MyCorp © 2017
    Создать бесплатный сайт с uCoz